- Reset all ×
- Poster Presentation ×
- The Hong Kong Polytechnic University ×
- Tung Wah College ×
- 1. Showcase Project Achievements ×
- 1.1 Teaching Development and Language Enhancement Grant (TDLEG) ×
- 1.3 Special UGC Grant for Strategic Development of Virtual Teaching and Learning (VTL) ×
- 2.1 Community of Practice (CoP) ×
- 2.2 Diversity and Inclusion Education ×
- 2.3 Community Engaged Learning ×
Filter Presentations
2 posts found
Poster Presentation Time: 1225-1400; 1500-1600
Venue: H2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Pauli LAI, Lecturer, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University
– Dr Julia CHEN, Director, Educational Development Centre, The Hong Kong Polytechnic University
Abstract
A common assessment in university is the oral presentation, and students are often required to deliver presentations in English. Two challenges arise. First, many students mainly focus on the discipline content in the assessment preparation process rather than the communication or use of English in their presentations. Second, lecturers of large classes (e.g. around 200 engineering students in one course) hardly have time to give feedback to each student on the English communication aspect of their oral presentations. A baseline survey reveals students’ need for assistance with presentation skills and a hope for having AI-generated feedback among both students and discipline teachers. To address these needs and hope, a team of educators from PolyU and BU with expertise in language and AI technology collaboratively developed an online English oral presentation platform called SmartPresenter. SmartPresenter provides students with presentation tips, learning materials, and extensive AI-generated feedback on the communication-related aspects of delivering oral presentations in English, including eye contact, facial expressions, vocal fillers, pronunciation, and fluency. This presentation describes the development and features of SmartPresenter, and the evaluation results of the effectiveness of the platform in facilitating independent learning practices for English oral presentations and assisting teachers in grading presentation assessment.
Theme: 1: Showcase Project Achievements
Sub-theme: 1.3Â Special UGC Grant for Strategic Development of Virtual Teaching and Learning (VTL)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: G4, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Hung-lin CHI, Associate Professor, Department of Building and Real Estate, The Hong Kong Polytechnic University
– Ms Junyu CHEN, Ph.D Student, Department of Building and Real Estate, The Hong Kong Polytechnic University
– Mr Haolei LIN, Ph.D Student, Department of Building and Real Estate, The Hong Kong Polytechnic University
Abstract
KnowLearn is an interactive learning assistant system designed for architecture, engineering, and construction (AEC) education, where personalized recommendations for students in virtual learning environments remain under-explored. An educational knowledge graph (KG) was constructed to contain multifaceted information by connecting pedagogical, learning performance, and learning feedback data as sub-graphs. A heterogeneous graph attention network (HAN) was implemented to infer latent information in the educational KG and identified essential factors shaping students’ acceptance of virtual learning environments. Based on sampling data of 107 students from the Hong Kong Polytechnic University, Department of Building and Real Estate, we found students’ self-efficacy, intention to use, and in-class quiz performance were significant predictors of final learning outcomes in subjects that adopt virtual learning environments. This project further deployed a local-based large language model (LLM) Qwen-7B and built an interactive graphical user interface (GUI) with Gradio. Utilizing the information preserved in the educational KG and learned from HAN as the basis, this LLM facilitated conversations between students and KnowLearn, enhancing personalized recommendations while securing student privacy. The developed system contributed to helping improve the learning experiences and performances of AEC students within virtual learning environments.
Theme: 1: Showcase Project Achievements