- Reset all ×
- Poster Presentation ×
- City University of Hong Kong ×
- The Education University of Hong Kong ×
- Hong Kong Baptist University ×
- Lingnan University ×
- The Hong Kong Polytechnic University ×
- Yew Chung College of Early Childhood Education ×
- 1. Showcase Project Achievements ×
- 1.4 Other UGC grants, Quality Education Fund (QEF), and Quality Enhancement Support Scheme (QESS) ×
Filter Presentations
3 posts found
Poster Presentation Time: 1225-1400; 1500-1600
Venue: J1, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Professor Jeanne TAN, Professor, School of Fashion and Textiles, The Hong Kong Polytechnic University
– Dr Wing Chung WONG, Post-Doctoral Fellow, School of Fashion and Textiles, The Hong Kong Polytechnic University
Abstract
Talent development in innovation and technology is key to the sustainable development of a vibrant economy. STEM education plays a vital role in nurturing a globally competitive workforce for the future. Fostering STEM literacy at the early stages of education will equip students with the core knowledge and interdisciplinary skills for creative innovation and contributing to the future economy. Conventional education is often discipline-focused with a tendency to employ linear learning strategies which do not fully explore the knowledge opportunities present in the interdisciplinary STEM content. This often results in a skewed emphasis on technical content which young students may find difficult to contextualise in daily life. The reflective and adaptive nature of design may serve as an effective bridge to connect creativity and knowledge seeking in STEM domains (Toomey and Tan, 2018). A design-led STEM framework was adopted in two Quality Education Fund projects, reaching over 1000 secondary school students. These projects utilized fashion, artificial intelligence, and e-textiles as mediums to help students develop problem solving skills with real world applications.
Theme: 1: Showcase Project Achievements
Sub-theme: 1.4 Other UGC grants, Quality Education Fund (QEF), and Quality Enhancement Support Scheme (QESS)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: L2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Kenneth Chi-hang LO, Associate Division Head and Senior Lecturer, Division of Science, School of Medical and Health Sciences, College of Professional and Continuing Education, The Hong Kong Polytechnic University
– Dr Anthony Wai-keung LOH, Division Head and Director of Hong Kong Community College, Division of Science, School of Medical and Health Sciences, College of Professional and Continuing Education, The Hong Kong Polytechnic University,
Abstract
The learning and teaching of science and/or engineering subjects face a big challenge under the COVID-19 pandemic because all face-to-face laboratory works are suspended. Since laboratory works are essential and critical elements to science and engineering education. Teachers have tried other means to relief the effect by performing demonstration, simulation or virtual laboratory, such that experimental data can be collected for analysis afterwards. However, students commented that they cannot see and control the laboratory apparatus in “real” time. Besides, students are required to conduct experiments in a fixed schedule and usually the teaching and laboratory schedules are not synchronized, due to the limited laboratory equipment and space. Students are required to conduct the experiment before the teaching of the corresponding theory. This affects their learning experience and motivation. The proposed project aims to develop a web-based remote laboratory for science and engineering education to facilitate student independent learning and enhance their learning experience. The objectives of the project are to: (1) design the infrastructure and software specification of the remote laboratory system; (2) identify experimental sets that can be conducted remotely; (3) enhance student learning experience and engagement as “real time” operation of laboratory equipment individually or in a group at anytime and anywhere under safe and controlled environment; (4) reduce the initial investment on offering science and/or engineering programmes by other local institutions for a better development of the sector; (5) enhance collaboration between local and even overseas institutions by sharing experimental sets; (6) inspire the tertiary education sector to develop blended and online teaching modules for science and engineering subjects which required laboratory works.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.4 Other UGC grants, Quality Education Fund (QEF), and Quality Enhancement Support Scheme (QESS)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: L3, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Dr Edmund Tai Ming WUT, Senior Lecturer, Division of Business and Hospitality Management, College of Professional and Continuing Education, The Hong Kong Polytechnic University
Abstract
We aim to investigate factors affecting students’ intention to join blended learning courses in higher education sector using Community of Inquiry framework and Unified Theory of Acceptance and Use of Technology (UTAUT) model. Stimulus-Organism-Response (S-O-R) model was employed to develop a new research framework while constructs in the Community of Inquiry are Stimulus and constructs from UTAUT are considered as Organism and Response. A survey was conducted with undergraduate students in a Hong Kong higher institution. It was found that Teaching Presence (TP), Social Presence (SP) and Cognitive Presence (CP) were associated with performance expectancy, social influence and effort expectancy respectively. Performance expectancy and effort expectancy were associated with social influence. Social influence was associated with students’ attitude towards blended learning. Institution support was not related to the students’ attitude towards blended learning in the post-pandemic period. Attitude towards blended learning was associated with their behavioral intention to participate in blended learning. Online and offline tools could be adopted to improve the students’ acceptance towards the blended learning approach.
Theme: 1. Showcase Project Achievements