- Reset all ×
- The Hong Kong University of Science and Technology ×
- Lingnan University ×
- The Hong Kong Polytechnic University ×
- Yew Chung College of Early Childhood Education ×
- 1.2 Fund for Innovative Technology-in-Education (FITE) ×
- 1.3 Special UGC Grant for Strategic Development of Virtual Teaching and Learning (VTL) ×
- 1.4 Other UGC grants, Quality Education Fund (QEF), and Quality Enhancement Support Scheme (QESS) ×
- 2.3 Community Engaged Learning ×
Filter Presentations
14 posts found
Oral Presentation Time: 1400-1500
Venue: Fanling Room, Lower Level I
Presenter(s)
– Dr Richard Wing Cheung LUI, Senior Lecturer, Department of Computing, The Hong Kong Polytechnic University
Abstract
This presentation introduces the design and implementation of GPTutor, a Generative AI (GenAI) powered Intelligent Tutoring System (ITS) developed at the Hong Kong Polytechnic University (PolyU). GPTutor aims to enhance student learning experiences through personalised tutoring and interactive exploration. It helps students gain a deeper understanding of the course materials provided by their instructors. During the first phase of our implementation, we developed features for instructors to upload and manage their course content and to create learning scenarios based on the learning content. The system includes a conversational interface for students to ask questions and explore course content to deepen their understanding. As the answers are generated based on the instructor-uploaded content, GPTutor provides more factual responses, reduces hallucinations, and aligns better with the instructors’ intended learning outcomes (ILO). We will also share findings from our pilot study, which involved approximately 200 undergraduate and postgraduate students at PolyU. Finally, we will discuss our future plans for further development and enhancement of the platform.
Theme: 1. Showcase Project Achievements
Sub-theme: Innovative Technology-in-Education
Poster Presentation Time: 1225-1400; 1500-1600
Venue: H2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Pauli LAI, Lecturer, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University
– Dr Julia CHEN, Director, Educational Development Centre, The Hong Kong Polytechnic University
Abstract
A common assessment in university is the oral presentation, and students are often required to deliver presentations in English. Two challenges arise. First, many students mainly focus on the discipline content in the assessment preparation process rather than the communication or use of English in their presentations. Second, lecturers of large classes (e.g. around 200 engineering students in one course) hardly have time to give feedback to each student on the English communication aspect of their oral presentations. A baseline survey reveals students’ need for assistance with presentation skills and a hope for having AI-generated feedback among both students and discipline teachers. To address these needs and hope, a team of educators from PolyU and BU with expertise in language and AI technology collaboratively developed an online English oral presentation platform called SmartPresenter. SmartPresenter provides students with presentation tips, learning materials, and extensive AI-generated feedback on the communication-related aspects of delivering oral presentations in English, including eye contact, facial expressions, vocal fillers, pronunciation, and fluency. This presentation describes the development and features of SmartPresenter, and the evaluation results of the effectiveness of the platform in facilitating independent learning practices for English oral presentations and assisting teachers in grading presentation assessment.
Theme: 1: Showcase Project Achievements
Sub-theme: 1.3 Special UGC Grant for Strategic Development of Virtual Teaching and Learning (VTL)
Oral Presentation Time: 1400-1500
Venue: Rose Room, Lower Level II
Presenter(s)
– Dr Aftab AMIN, Teaching Associate, Division of Life Science, The Hong Kong University of Science and Technology
Abstract
Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) empower educators to develop active-learning pedagogical approaches that motivate students to simultaneously engage, develop knowledge, social skills, and subject interest. To initiate VR/AR learning at the Division of Life Science (LIFS), HKUST, LIFS1904 Laboratory for General Biology II (comprising four experiments, ~300 diverse learners) was selected. In recent years, increasing enrollment has created manpower and space shortages, while post-pandemic issues have made student learning and the acquisition of resources, such as rat cadavers for teaching anatomy, physiology, and dissection more challenging. To address pressing issues, enhance active-learning, and make practical transitions fluid and cohesive, gamification is being used to develop a customizable, Virtual Reality Platform (VRP). A story-based narrative has also been implemented to create immersive, engaging, memorable and impactful pedagogy. In this presentation we will examine the deliverables of the project. Some of the findings from our student surveys, focus groups and interviews will also be shared to provide a better understanding of how technology-driven pedagogical innovations can facilitate active learning, information literacy, enhance student support, and facilitate peer-teaching, so that graduate attributes can be delivered.
Theme: 1: Showcase Project Achievements
Sub-theme: Strategic Development of Virtual Teaching and Learning (VTL)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: J1, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Professor Jeanne TAN, Professor, School of Fashion and Textiles, The Hong Kong Polytechnic University
– Dr Wing Chung WONG, Post-Doctoral Fellow, School of Fashion and Textiles, The Hong Kong Polytechnic University
Abstract
Talent development in innovation and technology is key to the sustainable development of a vibrant economy. STEM education plays a vital role in nurturing a globally competitive workforce for the future. Fostering STEM literacy at the early stages of education will equip students with the core knowledge and interdisciplinary skills for creative innovation and contributing to the future economy. Conventional education is often discipline-focused with a tendency to employ linear learning strategies which do not fully explore the knowledge opportunities present in the interdisciplinary STEM content. This often results in a skewed emphasis on technical content which young students may find difficult to contextualise in daily life. The reflective and adaptive nature of design may serve as an effective bridge to connect creativity and knowledge seeking in STEM domains (Toomey and Tan, 2018). A design-led STEM framework was adopted in two Quality Education Fund projects, reaching over 1000 secondary school students. These projects utilized fashion, artificial intelligence, and e-textiles as mediums to help students develop problem solving skills with real world applications.
Theme: 1: Showcase Project Achievements
Sub-theme: 1.4 Other UGC grants, Quality Education Fund (QEF), and Quality Enhancement Support Scheme (QESS)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: K2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Sean MCMINN, Director, Center for Education Innovation, The Hong Kong University of Science and Technology
Abstract
This project aims to develop a Co-Instructrional Designer platform to assist instructors in creating course materials. By leveraging Generative AI, the platform will support faculty members in designing course outlines, content, learning activities, assignments, and rubrics aligned with learning outcomes. The platform will connect to a Center for Education Innovation (CEI)-managed knowledge base containing curated pedagogies and best practices. Instructors will interact with the platform through pre-defined prompts, receiving tailored guidance that they can evaluate and adapt to meet their specific course needs. Key features of the platform include front-end interfaces for instructors and system administrators, robust technical architecture for file storage, and conversation history management. Having completed the Proof-of-Concept phase, implementation will proceed with structuring the knowledge base, developing the frontend, integrating the system, and conducting testing, with the final rollout planned for Fall 2025/26. The project will benefit approximately 750 faculty members and teaching staff at HKUST. This tool has multiple applications: it can serve as a co-designer for faculty, support quality assurance, assist with faculty development, and aid in Teaching and Learning Innovation Pedagogy and Blended Learning Projects. Success will be measured by the quality of responses in testing scenarios, training participation and satisfaction, and overall platform usage.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.2 Fund for Innovative Technology-in-Education (FITE)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: L2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Kenneth Chi-hang LO, Associate Division Head and Senior Lecturer, Division of Science, School of Medical and Health Sciences, College of Professional and Continuing Education, The Hong Kong Polytechnic University
– Dr Anthony Wai-keung LOH, Division Head and Director of Hong Kong Community College, Division of Science, School of Medical and Health Sciences, College of Professional and Continuing Education, The Hong Kong Polytechnic University,
Abstract
The learning and teaching of science and/or engineering subjects face a big challenge under the COVID-19 pandemic because all face-to-face laboratory works are suspended. Since laboratory works are essential and critical elements to science and engineering education. Teachers have tried other means to relief the effect by performing demonstration, simulation or virtual laboratory, such that experimental data can be collected for analysis afterwards. However, students commented that they cannot see and control the laboratory apparatus in “real” time. Besides, students are required to conduct experiments in a fixed schedule and usually the teaching and laboratory schedules are not synchronized, due to the limited laboratory equipment and space. Students are required to conduct the experiment before the teaching of the corresponding theory. This affects their learning experience and motivation. The proposed project aims to develop a web-based remote laboratory for science and engineering education to facilitate student independent learning and enhance their learning experience. The objectives of the project are to: (1) design the infrastructure and software specification of the remote laboratory system; (2) identify experimental sets that can be conducted remotely; (3) enhance student learning experience and engagement as “real time” operation of laboratory equipment individually or in a group at anytime and anywhere under safe and controlled environment; (4) reduce the initial investment on offering science and/or engineering programmes by other local institutions for a better development of the sector; (5) enhance collaboration between local and even overseas institutions by sharing experimental sets; (6) inspire the tertiary education sector to develop blended and online teaching modules for science and engineering subjects which required laboratory works.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.4 Other UGC grants, Quality Education Fund (QEF), and Quality Enhancement Support Scheme (QESS)
Poster Presentation Time: 1500-1600; 1700-1800
Venue: E2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Grace NGAI, Head, Service-Learning and Leadership Office, The Hong Kong Polytechnic University
– Dr Stephen CHAN, Principal Project Fellow and Founding Head, Service-Learning and Leadership Office, The Hong Kong Polytechnic University
– Dr Perry LEE, Manager, Service-Learning and Leadership Office, The Hong Kong Polytechnic University
– Dr Angel LUO, The Hong Kong Polytechnic University
– Dr Shuheng LIN, Project Fellow, Service-Learning and Leadership Office, The Hong Kong Polytechnic University
– Mr Kenneth LO, Senior Manager, Service-Learning and Leadership Office, The Hong Kong Polytechnic University,
Abstract
In Hong Kong, internationalization is a key performance indicator for the higher education section in response to the policy goal of establishing the city as a regional education hub (University Grants Committee, 2017). Resources have been allocated to universities for various initiatives including the recruitment of international faculty and students, inter-institutional collaboration in research, and students’ overseas learning experiences. A document analysis study on 6 universities in Hong Kong showed a notable increase of institutional focus on internationalization, intercultural skills, culture, diversity, equality, and inclusion post-pandemic (Lai, 2022). Besides its contribution to global connectivity, knowledge exchange, and institutional development (Lane, 2014), internationalizing higher education is also important to prepare students for a globalized world (Egron-Polak, 2011). Given the increasing diversity within universities and societies, prioritizing the cultivation of students’ intercultural sensitivity (IS) has become essential as it enhances students’ academic and personal success and fosters harmony and development within communities. Different strategies have been implemented in higher education institutes to provide intercultural opportunities for students. These include student mobility programmes, including short and long-term immersive learning activities that bring students outside of their home country to study abroad. At the Hong Kong Polytechnic University, this includes international service-learning (ISL), with a university target of 50% of students having an ISL experience by 2027-28. In this poster presentation, we will study the impact of ISL on students’ intercultural sensitivity from multiple dimensions, including knowledge, skills, and attitudes.
Theme: 2. Thematic Exploration
Sub-theme: 2.3 Community Engaged Learning
Poster Presentation Time: 1225-1400; 1500-1600
Venue: H4, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Mr Isaac Ka Chun WAN, Instructional Designer, Centre for Education Innovation, The Hong Kong University of Science and Technology
Abstract
The use of videos in asynchronous learning significantly enhances the educational experience, especially for intricate or abstract concepts. Videos allow students to adapt their learning pace, fostering a more flexible and personalized process. However, traditional video lectures often promote passive learning, making it hard for instructors to monitor students’ progress effectively. To address these challenges and help instructors create an interactive video-based learning environment, a strategic workflow has been developed. This workflow incorporates two customized digital tools that facilitate the creation of engaging video elements and provide detailed analytics on student engagement and progress. As a result, students are empowered in their asynchronous learning journey.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.3 Special UGC Grant for Strategic Development of Virtual Teaching and Learning (VTL)
Oral Presentation Time: 1400-1500
Venue: Rose Room, Lower Level II
Presenter(s)
– Dr Ronnie SHROFF, Principal Project Fellow, Teaching and Learning Centre, Lingnan University
Abstract
In response to the COVID-19 pandemic, the University Grants Committee (UGC) and the Quality Assurance Council (QAC) allocated dedicated funding to support the strategic long-term development of virtual teaching and learning (VTL) in Hong Kong’s eight UGC-funded universities. Lingnan University, as the lead institution of a consortium of six participating universities, secured funding to establish benchmarking practices and quality assurance standards on VTL that reference internationally accepted standards within the local context. This project aims to strengthen institutional capabilities and enhance the quality of VTL provision, including online teaching and learning, distance education delivery, and technology-enhanced learning. The project involves collaboration and funding from The University of Hong Kong, The Hong Kong University of Science and Technology and the City University of Hong Kong, as well as in-kind support from The Chinese University of Hong Kong and The Hong Kong Polytechnic University. The primary objective of this project is to establish a shared quality assurance framework and standards for online learning and teaching that align with local and global standards. By adopting a collaborative approach, this project seeks to enhance the quality of VTL as a key strategic focus area of institutional development and performance improvement. This presentation will provide an overview of the project’s key objectives, methodology and outcomes. It will also discuss the challenges encountered and lessons learned in developing quality assurance and benchmarking standards for VTL across universities. Finally, the presentation will conclude with recommendations for future collaborations to enhance the quality of VTL provision within the Hong Kong higher education context.
Theme: 1. Showcase Project Achievements
Sub-theme: Strategic Development of Virtual Teaching and Learning (VTL)
Oral Presentation Time: 1400-1500
Venue: Fanling Room, Lower Level I
Presenter(s)
– Mr Jac LEUNG, Lecturer, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology
Abstract
This project explores the intersection of Generative AI, reflection and experiential learning, highlighting GenAI’s pivotal role in fostering deeper cognitive processes and the attainment of complex knowledge structures. In recognition of the multifaceted dimensions of reflection, we aim to examine GenAI’s role in promoting different focuses of reflection including technical reflection on efficiency of attaining goals; practical reflection on challenging assumptions and establishing identities; and critical reflection on reflecting within a broader consideration of socio-historical and political-cultural context. GenAI is widely praised for its ability to serve as agent to writing and agent to knowledge. This study explores GenAI’s potential as agent to reflect, offering a perspective transformation devoid of judgement and social bias. We adopt an action research approach to accommodate both the rapidly growing research area and state-of-the-art teaching innovations. To examine the roles of GenAI in various types of experiential learning contexts, a 3-year collaboration project consists of four local universities in Hong Kong was initiated in early 2024. Participating students are of diverse background in science, social science, engineering, business, and health profession (radiography). Reflective exercises are designed according to the course context and the type of experiences within entrepreneurship education, social innovation, and health professional training.
Theme: 1. Showcase Project Achievements
Sub-theme: Innovative Technology-in-Education
Oral Presentation Time: 1400-1500
Venue: Fanling Room, Lower Level I
Presenter(s)
– Mr Jungjin PARK, PhD student, Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology
– Professor Larry LI, Associate Head & Associate Professor, Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technolog
Abstract
Immersive technologies come in various forms and names, such as virtual reality (VR), augmented reality (AR), and recently spatial computing. While higher education has always been at the forefront of experimenting with such technologies in the classroom, the ubiquity of smartphones and tablets – capable of creating robust AR experiences – has made it possible for wider adoption in recent years. In this presentation, we highlight lessons learned from a pilot project that leveraged AR to enhance aerospace laboratory training at the Hong Kong University of Science and Technology, and how this effort is being expanded across multiple disciplines such as pulmonary physiotherapy and forensic pathology. In particular, we share our vision to combine AR and large language models (LLMs) to design truly immersive learning experiences that can be effectively deployed into classrooms. When combined, the two technologies mutually benefit and supplement their respective advantages and limitations, thereby overcoming many of the current challenges faced by educators when deploying either on their own.
Theme: 1. Showcase Project Achievements
Sub-theme: Innovative Technology-in-Education
Poster Presentation Time: 1225-1400; 1500-1600
Venue: L3, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Dr Edmund Tai Ming WUT, Senior Lecturer, Division of Business and Hospitality Management, College of Professional and Continuing Education, The Hong Kong Polytechnic University
Abstract
We aim to investigate factors affecting students’ intention to join blended learning courses in higher education sector using Community of Inquiry framework and Unified Theory of Acceptance and Use of Technology (UTAUT) model. Stimulus-Organism-Response (S-O-R) model was employed to develop a new research framework while constructs in the Community of Inquiry are Stimulus and constructs from UTAUT are considered as Organism and Response. A survey was conducted with undergraduate students in a Hong Kong higher institution. It was found that Teaching Presence (TP), Social Presence (SP) and Cognitive Presence (CP) were associated with performance expectancy, social influence and effort expectancy respectively. Performance expectancy and effort expectancy were associated with social influence. Social influence was associated with students’ attitude towards blended learning. Institution support was not related to the students’ attitude towards blended learning in the post-pandemic period. Attitude towards blended learning was associated with their behavioral intention to participate in blended learning. Online and offline tools could be adopted to improve the students’ acceptance towards the blended learning approach.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.4 Other UGC grants, Quality Education Fund (QEF), and Quality Enhancement Support Scheme (QESS)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: K1, Tai Po-Shek-O Room, Lower Level 1
Presenter(s)
– Dr Laura ZHOU, Education Development Officer, Education Development Centre, The Hong Kong Polytechnic University
– Mr Leo WONG, Project Associate, Education Development Centre, The Hong Kong Polytechnic University
Abstract
The flipped learning and teaching approach redefines the traditional classroom dynamic by swapping the order of direct instruction and homework activities. In a flipped classroom, students engage with instructional materials (such as videos, readings, or podcasts) outside of class, freeing up valuable in-class time for active learning, collaborative activities, and deeper understanding. In our quest to promote effective flipped learning and teaching practices, we conducted comprehensive interviews with experienced teaching staff at PolyU, who have successfully integrated this methodology into their course. Their valuable insights were collected and compiled into case studies, which were then disseminated to all teaching staff members through e-newsletters and experience sharing workshops. These teaching cases serve as compelling examples, showcasing the versatility and impact of flipped learning and teaching. They underscore the significance of adapting pedagogical methods to enhance student learning experiences. By shifting the locus of content consumption outside the classroom, educators empower students to actively engage with the material during face-to-face sessions, fostering a deeper understanding and more meaningful interactions.
Theme: 1: Showcase Project Achievements
Sub-theme: 1.2 Fund for Innovative Technology-in-Education (FITE)
Oral Presentation Time: 1400-1500
Venue: Peony Room, Lower Level II
Presenter(s)
– Dr Peggy NG, Principal Lecturer, Division of Business and Hospitality Management, College of Professional and Continuing Education, The Hong Kong Polytechnic University
Abstract
With the development of innovative technology, virtual reality (VR) has become very popular and accessible to the public. There has been growing evidence that VR can influence people and change their values and behaviors. VR encourages individuals, especially teenagers, to engage in a specific behavior, such as pro-environmental behavior (PEB). Pro-environmental behavior (PEB) allowed lowering the environmental harms deliberately and substantially enhancing the future harmony. Using Value-Belief-Norm (VBN) theory, the present study aims to examine the relationship between teenagers’ perceived values and pro-environmental behavioral intention in VR platforms. Students (N = 120) were invited to visit the VR lab for an immersive experience focused on carbon footprint. The results showed that hedonic value predicts pro-environmental intention, whereas altruistic value predicts awareness of responsibility of individuals. The findings of the study will contribute to both theoretical and practical contributions. From practical perspectives, integrating VR into sustainability education can enhance student engagement by providing immersive and interactive VR experiences. This innovative approach of teaching fosters students’ pro-environmental intention, raising awareness of personal responsibility in caring for the environment. By incorporating VR elements into programme development, higher education institutions can better equip students with the knowledge in sustainability to address future environmental challenges.
Theme: 1. Showcase Project Achievements