- Reset all ×
- College of Professional and Continuing Education, The Hong Kong Polytechnic University ×
- The Education University of Hong Kong ×
- The Hong Kong University of Science and Technology ×
- Lingnan University ×
- Tung Wah College ×
- Yew Chung College of Early Childhood Education ×
- 1. Showcase Project Achievements ×
- 1.2 Fund for Innovative Technology-in-Education (FITE) ×
- 1.3 Special UGC Grant for Strategic Development of Virtual Teaching and Learning (VTL) ×
- 2.2 Diversity and Inclusion Education ×
- 2.3 Community Engaged Learning ×
Filter Presentations
8 posts found
Poster Presentation Time: 1225-1400; 1500-1600
Venue: I4, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Yanjie SONG, Associate Professor, Department of Mathematics and Information Technology, The Education University of Hong Kong
– Mr Kaiyi WU, Department of Mathematics and Information Technology, The Education University of Hong Kong
Abstract
Integrating artificial intelligence (AI) into educational settings is crucial for developing innovative teaching methods that enhance student learning. This study investigates the development and application of Learningverse, a 2D/3D metaverse platform that integrates digital humans with advanced Large Language Model Operations (LLMOps) to create AI teaching agents. Leveraging the capabilities of Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG), we designed intelligent digital human teachers. These LLMOps system-constructed multi-agents, including Communication Encoder, Body Movement Coding Encoder, Eye Gaze Coding Encoder, and Expression Coding Encoder, provide personalized and strategic scaffolding to students, offering real-time feedback and support to improve their learning outcomes. Additionally, the platform utilizes GPT-SoVITS trained TTS to clone real teachers’ voices, enhancing the realism of digital human teachers. The platform can customize digital teachers and build scenarios based on different subject courses, adapting them to various thematic curricula. A pilot study evaluated the effectiveness of these digital teachers in enhancing student engagement and performance in Learningverse. Preliminary findings reveal a significant improvement in students’ interactions, motivation, and overall learning achievements. This research highlights the potential of LLMOps-integrated digital human teachers in transforming teaching practices and enriching educational experiences in the metaverse.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.2Â Fund for Innovative Technology-in-Education (FITE)
Oral Presentation Time: 1400-1500
Venue: Rose Room, Lower Level II
Presenter(s)
– Dr Aftab AMIN, Teaching Associate, Division of Life Science, The Hong Kong University of Science and Technology
Abstract
Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) empower educators to develop active-learning pedagogical approaches that motivate students to simultaneously engage, develop knowledge, social skills, and subject interest. To initiate VR/AR learning at the Division of Life Science (LIFS), HKUST, LIFS1904 Laboratory for General Biology II (comprising four experiments, ~300 diverse learners) was selected. In recent years, increasing enrollment has created manpower and space shortages, while post-pandemic issues have made student learning and the acquisition of resources, such as rat cadavers for teaching anatomy, physiology, and dissection more challenging. To address pressing issues, enhance active-learning, and make practical transitions fluid and cohesive, gamification is being used to develop a customizable, Virtual Reality Platform (VRP). A story-based narrative has also been implemented to create immersive, engaging, memorable and impactful pedagogy. In this presentation we will examine the deliverables of the project. Some of the findings from our student surveys, focus groups and interviews will also be shared to provide a better understanding of how technology-driven pedagogical innovations can facilitate active learning, information literacy, enhance student support, and facilitate peer-teaching, so that graduate attributes can be delivered.
Theme: 1: Showcase Project Achievements
Sub-theme: Strategic Development of Virtual Teaching and Learning (VTL)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: K2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Sean MCMINN, Director, Center for Education Innovation, The Hong Kong University of Science and Technology
Abstract
This project aims to develop a Co-Instructrional Designer platform to assist instructors in creating course materials. By leveraging Generative AI, the platform will support faculty members in designing course outlines, content, learning activities, assignments, and rubrics aligned with learning outcomes. The platform will connect to a Center for Education Innovation (CEI)-managed knowledge base containing curated pedagogies and best practices. Instructors will interact with the platform through pre-defined prompts, receiving tailored guidance that they can evaluate and adapt to meet their specific course needs. Key features of the platform include front-end interfaces for instructors and system administrators, robust technical architecture for file storage, and conversation history management. Having completed the Proof-of-Concept phase, implementation will proceed with structuring the knowledge base, developing the frontend, integrating the system, and conducting testing, with the final rollout planned for Fall 2025/26. The project will benefit approximately 750 faculty members and teaching staff at HKUST. This tool has multiple applications: it can serve as a co-designer for faculty, support quality assurance, assist with faculty development, and aid in Teaching and Learning Innovation Pedagogy and Blended Learning Projects. Success will be measured by the quality of responses in testing scenarios, training participation and satisfaction, and overall platform usage.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.2Â Fund for Innovative Technology-in-Education (FITE)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: H4, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Mr Isaac Ka Chun WAN, Instructional Designer, Centre for Education Innovation, The Hong Kong University of Science and Technology
Abstract
The use of videos in asynchronous learning significantly enhances the educational experience, especially for intricate or abstract concepts. Videos allow students to adapt their learning pace, fostering a more flexible and personalized process. However, traditional video lectures often promote passive learning, making it hard for instructors to monitor students’ progress effectively. To address these challenges and help instructors create an interactive video-based learning environment, a strategic workflow has been developed. This workflow incorporates two customized digital tools that facilitate the creation of engaging video elements and provide detailed analytics on student engagement and progress. As a result, students are empowered in their asynchronous learning journey.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.3Â Special UGC Grant for Strategic Development of Virtual Teaching and Learning (VTL)
Oral Presentation Time: 1400-1500
Venue: Rose Room, Lower Level II
Presenter(s)
– Dr Ronnie SHROFF, Principal Project Fellow, Teaching and Learning Centre, Lingnan University
Abstract
In response to the COVID-19 pandemic, the University Grants Committee (UGC) and the Quality Assurance Council (QAC) allocated dedicated funding to support the strategic long-term development of virtual teaching and learning (VTL) in Hong Kong’s eight UGC-funded universities. Lingnan University, as the lead institution of a consortium of six participating universities, secured funding to establish benchmarking practices and quality assurance standards on VTL that reference internationally accepted standards within the local context. This project aims to strengthen institutional capabilities and enhance the quality of VTL provision, including online teaching and learning, distance education delivery, and technology-enhanced learning. The project involves collaboration and funding from The University of Hong Kong, The Hong Kong University of Science and Technology and the City University of Hong Kong, as well as in-kind support from The Chinese University of Hong Kong and The Hong Kong Polytechnic University. The primary objective of this project is to establish a shared quality assurance framework and standards for online learning and teaching that align with local and global standards. By adopting a collaborative approach, this project seeks to enhance the quality of VTL as a key strategic focus area of institutional development and performance improvement. This presentation will provide an overview of the project’s key objectives, methodology and outcomes. It will also discuss the challenges encountered and lessons learned in developing quality assurance and benchmarking standards for VTL across universities. Finally, the presentation will conclude with recommendations for future collaborations to enhance the quality of VTL provision within the Hong Kong higher education context.
Theme: 1. Showcase Project Achievements
Sub-theme: Strategic Development of Virtual Teaching and Learning (VTL)
Oral Presentation Time: 1400-1500
Venue: Fanling Room, Lower Level I
Presenter(s)
– Mr Jac LEUNG, Lecturer, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology
Abstract
This project explores the intersection of Generative AI, reflection and experiential learning, highlighting GenAI’s pivotal role in fostering deeper cognitive processes and the attainment of complex knowledge structures. In recognition of the multifaceted dimensions of reflection, we aim to examine GenAI’s role in promoting different focuses of reflection including technical reflection on efficiency of attaining goals; practical reflection on challenging assumptions and establishing identities; and critical reflection on reflecting within a broader consideration of socio-historical and political-cultural context. GenAI is widely praised for its ability to serve as agent to writing and agent to knowledge. This study explores GenAI’s potential as agent to reflect, offering a perspective transformation devoid of judgement and social bias. We adopt an action research approach to accommodate both the rapidly growing research area and state-of-the-art teaching innovations. To examine the roles of GenAI in various types of experiential learning contexts, a 3-year collaboration project consists of four local universities in Hong Kong was initiated in early 2024. Participating students are of diverse background in science, social science, engineering, business, and health profession (radiography). Reflective exercises are designed according to the course context and the type of experiences within entrepreneurship education, social innovation, and health professional training.
Theme: 1. Showcase Project Achievements
Sub-theme: Innovative Technology-in-Education
Oral Presentation Time: 1400-1500
Venue: Fanling Room, Lower Level I
Presenter(s)
– Mr Jungjin PARK, PhD student, Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology
– Professor Larry LI, Associate Head & Associate Professor, Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technolog
Abstract
Immersive technologies come in various forms and names, such as virtual reality (VR), augmented reality (AR), and recently spatial computing. While higher education has always been at the forefront of experimenting with such technologies in the classroom, the ubiquity of smartphones and tablets – capable of creating robust AR experiences – has made it possible for wider adoption in recent years. In this presentation, we highlight lessons learned from a pilot project that leveraged AR to enhance aerospace laboratory training at the Hong Kong University of Science and Technology, and how this effort is being expanded across multiple disciplines such as pulmonary physiotherapy and forensic pathology. In particular, we share our vision to combine AR and large language models (LLMs) to design truly immersive learning experiences that can be effectively deployed into classrooms. When combined, the two technologies mutually benefit and supplement their respective advantages and limitations, thereby overcoming many of the current challenges faced by educators when deploying either on their own.
Theme: 1. Showcase Project Achievements
Sub-theme: Â Innovative Technology-in-Education
Poster Presentation Time: 1225-1400; 1500-1600
Venue: I3, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Ms Winnie WONG, Educational Development Manager, Centre for Learning, Teaching and Technology, The Education University of Hong Kong
– Mr Vincent CHAN, Educational Development Assistant, Centre for Learning, Teaching and Technology, The Education University of Hong Kong
Abstract
Background and Objectives: This project aims to leverage the immersive capabilities of the metaverse to enhance data security and privacy awareness among students and staff at the Education University of Hong Kong. Develop a series of interactive and engaging educational materials to enhance the understanding of data security principles and data privacy policies. Design and implement a dynamic and user-friendly online platform (Metaverse Space) to host the educational materials, facilitating easy access and learning for target audiences. Methods and Findings: Within this metaverse-based platform, users are presented with practical scenarios that simulate real-world situations involving security-critical concepts. The educational virtual environment is strategically gamified to motivate users through rewarding challenges and progressive levels, bridging the gap between theory and practice. The dynamic simulation exercises allow participants to directly experience the impact of security failures and rehearse protective actions in a risk-free, controlled setting, nurturing applied skills alongside conceptual understanding. The survey results, based on responses from (n=20), indicate that the gamified metaverse prototype is both engaging and effective in teaching data security and privacy concepts. The interactive scenarios and simulations were particularly praised for their usefulness in understanding real-world data security issues. The navigation of the metaverse environment was generally considered easy. Overall, the positive responses suggest that the gamified metaverse is a valuable tool for learning data security, demonstrating its effectiveness in an educational context. Discussion and Perspectives: Leveraging Metaverses data security learning platform offers an innovative and immersive approach to addressing the limitations of traditional training methods, empowering users with comprehensive knowledge and applied skills to mitigate evolving cyber threats.