- Reset all ×
- City University of Hong Kong ×
- The Chinese University of Hong Kong ×
- The Hong Kong Polytechnic University ×
- Yew Chung College of Early Childhood Education ×
- 1. Showcase Project Achievements ×
- 1.1 Teaching Development and Language Enhancement Grant (TDLEG) ×
- 1.2 Fund for Innovative Technology-in-Education (FITE) ×
- 1.3 Special UGC Grant for Strategic Development of Virtual Teaching and Learning (VTL) ×
- 2.2 Diversity and Inclusion Education ×
- 2.4 Whole-Person Development ×
Filter Presentations
13 posts found
Oral Presentation Time: 1400-1500
Venue: Fanling Room, Lower Level I
Presenter(s)
– Dr Richard Wing Cheung LUI, Senior Lecturer, Department of Computing, The Hong Kong Polytechnic University
Abstract
This presentation introduces the design and implementation of GPTutor, a Generative AI (GenAI) powered Intelligent Tutoring System (ITS) developed at the Hong Kong Polytechnic University (PolyU). GPTutor aims to enhance student learning experiences through personalised tutoring and interactive exploration. It helps students gain a deeper understanding of the course materials provided by their instructors. During the first phase of our implementation, we developed features for instructors to upload and manage their course content and to create learning scenarios based on the learning content. The system includes a conversational interface for students to ask questions and explore course content to deepen their understanding. As the answers are generated based on the instructor-uploaded content, GPTutor provides more factual responses, reduces hallucinations, and aligns better with the instructors’ intended learning outcomes (ILO). We will also share findings from our pilot study, which involved approximately 200 undergraduate and postgraduate students at PolyU. Finally, we will discuss our future plans for further development and enhancement of the platform.
Theme: 1. Showcase Project Achievements
Sub-theme: Innovative Technology-in-Education
Poster Presentation Time: 1225-1400; 1500-1600
Venue: F2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Professor Paul Lai Chuen LAM, Associate Professor, Centre for Learning Enhancement And Research, The Chinese University of Hong Kong
– Mr Wikie Wai Kei CHAN, Research Coordinator, Centre for Learning Enhancement And Research, The Chinese University of Hong Kong
– Miss Ka Yan LAU, Research Assistant, Centre for Learning Enhancement And Research, The Chinese University of Hong Kong
Abstract
Artificial Intelligence (AI) is rapidly transforming the educational landscape, presenting both opportunities and challenges for educators. This poster presentation showcases the work of two UGC-funded projects: “AI in Education” and “Generative AI for Teaching and Education (GATE).” These initiatives aim to bridge the gap between AI technologies and educators. By familiarizing educators with AI applications, empowering them with research insights, and providing professional development opportunities, these projects enable teachers to harness the power of AI as a tool for enhancing teaching and learning experiences. The presentation highlights the journey of supporting teachers in exploring, understanding, and applying AI in their own teaching contexts and calls for active participation in the broader AI community.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.1Â Teaching Development and Language Enhancement Grant (TDLEG)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: H2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Pauli LAI, Lecturer, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University
– Dr Julia CHEN, Director, Educational Development Centre, The Hong Kong Polytechnic University
Abstract
A common assessment in university is the oral presentation, and students are often required to deliver presentations in English. Two challenges arise. First, many students mainly focus on the discipline content in the assessment preparation process rather than the communication or use of English in their presentations. Second, lecturers of large classes (e.g. around 200 engineering students in one course) hardly have time to give feedback to each student on the English communication aspect of their oral presentations. A baseline survey reveals students’ need for assistance with presentation skills and a hope for having AI-generated feedback among both students and discipline teachers. To address these needs and hope, a team of educators from PolyU and BU with expertise in language and AI technology collaboratively developed an online English oral presentation platform called SmartPresenter. SmartPresenter provides students with presentation tips, learning materials, and extensive AI-generated feedback on the communication-related aspects of delivering oral presentations in English, including eye contact, facial expressions, vocal fillers, pronunciation, and fluency. This presentation describes the development and features of SmartPresenter, and the evaluation results of the effectiveness of the platform in facilitating independent learning practices for English oral presentations and assisting teachers in grading presentation assessment.
Theme: 1: Showcase Project Achievements
Sub-theme: 1.3Â Special UGC Grant for Strategic Development of Virtual Teaching and Learning (VTL)
Challenges and Possibilities: Active Learning Strategy in Metaverse for Health Professions Education
Poster Presentation Time: 1225-1400; 1500-1600
Venue: G2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Florence Mei Kuen TANG, Lecturer, Division of Education, School of Biomedical Sciences, The Chinese University of Hong Kong
– Dr Charis Yuk Man LI, Lecturer, School of Life Sciences, The Chinese University of Hong Kong
– Mr Kenneth Chung Hin LAI, Centre for eLearning Innovation and Technology, The Chinese University of Hong Kong
Abstract
The metaverse offers unique attributes that differentiate it from other educational tools, particularly its “Interactivity, Corporeality, and Permanence” within an immersive unreal space. Active learning, a dynamic educational approach, encourages students to engage in learning rather than passively receiving information. We aim to harness the metaverse concept to create interior architectural design virtual spaces where learners can interact in real-time, computer-generated environments. Methods and Results Our team is currently developing innovative Metaverse Learning Environments (MetaL). Since early 2023, we have transitioned health-related tertiary education to active metaverse-based pedagogy for teaching and learning activities. This approach includes in-class teaching, flipped classes, after-class learning, virtual hands-on practice, and AI tutoring. A preliminary observational study of in-class activities reveals that teachers can reinforce knowledge delivery while students enhance their learning through positive class interactions. Discussion and Conclusion The MetaL showcases the importance of leveraging technology to revolutionize traditional learning environments. Such transformation boosts students’ confidence in self-directed learning, communication skills, collaborative learning, problem-solving, innovation, critical reflection, and proficiency in professional training, but with challenges. Take Home Message In the future, the rapid advancements in online-based communication and generative AI technologies will transform the academic landscape, contributing to metaverse digital learning resources. Additionally, interior architecture and design are critical for students to experience psychological and emotional relaxation when engaging in virtual learning environments for ethical interaction.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.1Â Teaching Development and Language Enhancement Grant (TDLEG)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: C2, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Professor Bin LI, Associate Professor, Department of Linguistics and Translation, City University of Hong Kong
– Dr Yee Na LI, Part-time Research Associate, Department of Linguistics and Translation, City University of Hong Kong
Abstract
Our ten years’ evidence-based study revealed that the alternative pathway from sub-degree to degree studies is viable while challenging for Senior Year Admission (SYA) students. The inadequate alignment between sub-degree and university programmes is the main determinant of their heavy academic workload. Their transitional challenges call for an examination of the existing programme articulation process and academic advising to SYA students. In response to their needs, the project sustains our previous work from UGC-funded and TDG sustainability projects to promote best practices to support SYA students. An online Cross Institutional Credit-transfer Information System (CICIS) was launched to enhance the transparency of credit transfer and facilitate smooth transition of SYA students. Another student-centred Resources Website was developed to provide cross-institutional support to SYA students from the first point of transferring to universities. In addition, a series of collaborative activities, such as an international Credit Transfer Conference, local and overseas webinar sessions and the Internationalisation-at-Home (IaH) programme, has been organised. The project provides implications to administrators and policy makers in higher education, informing policies and practices to optimize the transfer experience for students’ greater success in universities and in the society.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.1Â Teaching Development and Language Enhancement Grant (TDLEG)
Oral Presentation Time: 1400-1500
Venue: Camomile Room, Lower Level II
Presenter(s)
– Professor Adam FINGRUT, Director, Master of Architecture Programme, School of Architecture, The Chinese University of Hong Kong
Abstract
Design thinking methods are critical for architecture students as they provide a framework for human-centered and iterative problem-solving. This approach encourages students to empathize with the users of their designs, define the problem, ideate potential solutions, create prototypes, and test their ideas in real-world settings. By adopting an iterative approach toward full-scale prototyping of built projects, architecture students can gain valuable experience developing sustainable designs that consider the most efficient use of materials. The importance of prototyping with advanced tools to architecture students cannot be overstated in the context of STEAM-based higher education in Hong Kong. Using contemporary tools has become an integral part of the design process, and students must be equipped with the skills and knowledge necessary to utilize them effectively. This project considers design thinking and STEAM-based methods as essentials for architecture students as they provide a framework for developing sustainable and efficient designs. It adopts a peer learning pedagogy that promotes collaboration, mutual support, and knowledge sharing among students, which can enhance their academic and personal growth.
Theme: 1. Showcase Project Achievements
Sub-theme: Teaching Development and Language Enhancement
Poster Presentation Time: 1225-1400; 1500-1600
Venue: C4, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr John Alexander WRIGHT, Senior Lecturer, Department of Statistics, The Chinese University of Hong Kong
– Dr Kin Chi WONG, Research Associate, Centre for Learning Enhancement and Research, Centre for Learning Enhancement and Research, The Chinese University of Hong Kong
– Ms Irene Yuet Shan LEUNG, Research Assistant, Centre for Learning Enhancement and Research, Centre for Learning Enhancement and Research, The Chinese University of Hong Kong
Abstract
The project involves having research postgraduates in statistics (Stat RPgs) teach statistical methods to research postgraduates without a statistical background to support their research studies. During their training, they view our in-house developed videos. These videos include the learning challenges faced by students without a background in statistics. The videos also provide tips for effective statistics teaching, interviews with students without a statistics background, as well as shared experiences from previous Stat RPgs. After this, the RPgs finalize a teaching plan, prepare pre-workshop videos, and ultimately deliver two sections of a 3-hour in-person, hands-on workshop on a specific statistical method. The main challenge to the project’s success is formulating effective training strategies to align Stat RPgs’ expectations with those of students who lack a statistics background. Based on feedback from workshop participants and Stat RPgs, we recommend a bespoke approach to the training. This approach prioritizes learning from personal and shared experiences, as opposed to solely focusing on hard facts, theory, and data. The training includes observing the instant reactions of non-background students to math notations and basic statistics concepts, reviewing past experiences of Stat RPgs, observing how professors conduct workshops for students without a statistics background, facilitating discussions between Stat RPgs and instructors about draft teaching materials, and reflecting on teaching experiences after hands-on workshops. These activities prompt Stat RPgs to adapt their teaching methods to better accommodate students without a statistics background. Stat RPgs have discovered that modifying their teaching styles to suit the students’ needs is more effective than attempting to change the students. We discovered that our training program even enhances the teaching of Stat RPgs for statistics major students. This suggests the potential to develop sustainable, in-house training modules for teaching assistants within the department.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.1Â Teaching Development and Language Enhancement Grant (TDLEG)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: F3, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Professor Paul Lai Chuen LAM, Associate Professor, Centre for Learning Enhancement And Research, The Chinese University of Hong Kong
Abstract
This poster presentation illustrates how a teaching and learning community of practice (T&L CoP) is leveraged as a platform to bring together knowledge workers across The Chinese University of Hong Kong. The T&L CoP explores a variety of teaching and learning topics, ranging from the application of innovative technologies, curriculum, student engagement, pedagogy, and pedagogic research. In particular, the T&L CoP is versatile in two ways. First, it highlights the multifaceted nature of the community. Such overarching T&L CoP encompasses ten special interest groups (SIGs), such as artificial intelligence for education, education for social responsibility, educational research, students as partners, and service learning. Underlying most of these SIGs is a core teacher structure, meaning that teachers serve as convenors who initiate tasks and events while receiving support from the project team. Second, the T&L CoP is versatile in the sense of adaptability. Specifically, these SIGs are constantly evolving, with new groups being formed and old ones gradually phased out, following the pedagogic needs for current and future education. In this way, the T&L CoP serves as a dynamic, interconnected hub that enables the university community to collectively navigate pedagogical innovations, share insights, and elevate teaching and learning practice across disciplines.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.1Â Teaching Development and Language Enhancement Grant (TDLEG)
Oral Presentation Time: 1400-1500
Venue: Camomile Room, Lower Level II
Team member(s)
– Professor Alvin Chung Man LEUNG, Associate Head & Associate Professor, Department of Information Systems, City University of Hong Kong
Abstract
The COVID-19 pandemic has highlighted the critical importance of online learning, where learners must engage in self-regulated learning (SRL) to achieve optimal outcomes. Gamification interventions have been implemented to improve SRL engagement in online environments, but the mixed results of these efforts have raised doubts about their efficacy. This study investigates whether the inconsistent findings can be attributed to a lack of consideration for individual learner characteristics during gamification design. Focusing on Massive Open Online Courses (MOOCs), we examined how gamified performance feedback interacted with learners’ goal orientation, an individual trait known to influence SRL and learning. By tracking the SRL engagement of 760 college students over five weeks using learning analytics, we found that positively framed performance feedback without social comparisons increased SRL engagement and learning outcomes for participants with a strong performance-avoidance goal orientation. Conversely, the same feedback had a negative impact on participants with a strong mastery goal orientation. These findings contribute to SRL theory by demonstrating that the effectiveness of gamification in online learning is contingent on aligning the design elements with individual learner characteristics and highlight the importance of personalized gamification approaches to optimize SRL and learning in MOOC.
Theme: 1. Showcase Project Achievements
Sub-theme: Teaching Development and Language Enhancement
Poster Presentation Time: 1225-1400; 1500-1600
Venue: C3, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Ms Yangzhi LI, PhD student, School of Architecture, The Chinese University of Hong Kong – Prof Adam FINGRUT, Director, Master of Architecture Programme, School of Architecture, The Chinese University of Hong Kong
Abstract
The paper presents an investigation into the integration of robotic fabrication technologies within architectural pedagogy, aiming to develop effective teaching methods and curricula tailored for a diverse group of students, including both postgraduate and undergraduate students. Robotics is an important technology in Industry 4.0, providing a wide range of capabilities in the manufacturing field. The rapid advancement of robotic arms in various industries has opened new possibilities for architectural education. Many architecture schools worldwide have established experimental laboratories equipped with robotic arms, creating opportunities for students to explore beyond the traditional scope of CNC manufacturing, however, professional courses focused on integrating robotic construction technologies into architectural education are currently scarce in the field. This research aims to explore the use of robots as an open interface for student problem-solving, geometry exploration, and programming in architectural education, catering to the students’ diverse backgrounds and skill levels. By utilizing robotic construction technologies, students can engage in hands-on experimentation, fostering the adoption of digital fabrication techniques.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.1Â Teaching Development and Language Enhancement Grant (TDLEG)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: G4, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Hung-lin CHI, Associate Professor, Department of Building and Real Estate, The Hong Kong Polytechnic University
– Ms Junyu CHEN, Ph.D Student, Department of Building and Real Estate, The Hong Kong Polytechnic University
– Mr Haolei LIN, Ph.D Student, Department of Building and Real Estate, The Hong Kong Polytechnic University
Abstract
KnowLearn is an interactive learning assistant system designed for architecture, engineering, and construction (AEC) education, where personalized recommendations for students in virtual learning environments remain under-explored. An educational knowledge graph (KG) was constructed to contain multifaceted information by connecting pedagogical, learning performance, and learning feedback data as sub-graphs. A heterogeneous graph attention network (HAN) was implemented to infer latent information in the educational KG and identified essential factors shaping students’ acceptance of virtual learning environments. Based on sampling data of 107 students from the Hong Kong Polytechnic University, Department of Building and Real Estate, we found students’ self-efficacy, intention to use, and in-class quiz performance were significant predictors of final learning outcomes in subjects that adopt virtual learning environments. This project further deployed a local-based large language model (LLM) Qwen-7B and built an interactive graphical user interface (GUI) with Gradio. Utilizing the information preserved in the educational KG and learned from HAN as the basis, this LLM facilitated conversations between students and KnowLearn, enhancing personalized recommendations while securing student privacy. The developed system contributed to helping improve the learning experiences and performances of AEC students within virtual learning environments.
Theme: 1: Showcase Project Achievements
Sub-theme: 1.1Â Teaching Development and Language Enhancement Grant (TDLEG)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: C1, Tai Po-Shek-O Room, Lower Level I
Presenter(s)
– Dr Alex KOON, Senior Lecturer, School of Life Sciences, The Chinese University of Hong Kong
Abstract
This poster-sharing session shares the outcomes collected in the first phase of a TDG project, “AI for Formative Assessment”, exploring how the Automated Speech Recognition (ASR) function in AI can possibly provide formative feedback in speaking assessments. In this phase of the project, language teachers from the Centre for Language in Education at the Education University of Hong Kong have applied the ASR function on Whatsapp, a daily social messenger platform for Hong Kong students, to provide formative feedback during a consultation session in a University speaking course: Skills for Language Test I. This project explores the effectiveness, challenges, and implications of using AI to provide formative feedback on pronouncing words and phrases.
Theme: 1. Showcase Project Achievements
Sub-theme: 1.1Â Teaching Development and Language Enhancement Grant (TDLEG)
Poster Presentation Time: 1225-1400; 1500-1600
Venue: K1, Tai Po-Shek-O Room, Lower Level 1
Presenter(s)
– Dr Laura ZHOU, Education Development Officer, Education Development Centre, The Hong Kong Polytechnic University
– Mr Leo WONG, Project Associate, Education Development Centre, The Hong Kong Polytechnic University
Abstract
The flipped learning and teaching approach redefines the traditional classroom dynamic by swapping the order of direct instruction and homework activities. In a flipped classroom, students engage with instructional materials (such as videos, readings, or podcasts) outside of class, freeing up valuable in-class time for active learning, collaborative activities, and deeper understanding. In our quest to promote effective flipped learning and teaching practices, we conducted comprehensive interviews with experienced teaching staff at PolyU, who have successfully integrated this methodology into their course. Their valuable insights were collected and compiled into case studies, which were then disseminated to all teaching staff members through e-newsletters and experience sharing workshops. These teaching cases serve as compelling examples, showcasing the versatility and impact of flipped learning and teaching. They underscore the significance of adapting pedagogical methods to enhance student learning experiences. By shifting the locus of content consumption outside the classroom, educators empower students to actively engage with the material during face-to-face sessions, fostering a deeper understanding and more meaningful interactions.
Theme: 1: Showcase Project Achievements